• High-dimensional entanglement-enabled holography for quantum encryption

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: As an important imaging technique, holography has been realized with different physical dimensions of light,including polarization, wavelength, and time. Recently, quantum holography has been realized by utilizing polarization entangled state with the advantages of high robustness and enhanced spatial resolution, comparing with classical one. However, the polarization is only a two-dimensional degree of freedom, which greatly limits the capacity of quantum holography. Here, we propose a method to realize high-dimensional quantum holography by using high-dimensional orbital angular momentum (OAM) entanglement. A high capacity OAM-encoded quantum holographic system can be obtained by multiplexing a wide range of OAM-dependent holographic images. Proof-of-principle experiments with four- and six-dimensional OAM entangled states have been implemented and verify the feasibility of our idea. Our experimental results also demonstrate that the high-dimensional quantum holography shows a high robustness to classical noise. Furthermore, OAMselective holographic scheme for quantum encryption is proposed and demonstrated. Comparing with the previous schemes, the level of security of holographic imaging encryption system can be greatly improved in our high-dimensional quantum holography.

  • Topology-optimized ultra-compact all-optical logic devices on silicon photonic platforms

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The realization of all-optical integration and optical computing has always been our goal. One of the most significant challenges is to make integrated all-optical logic devices as small as possible. Here, we report the implementation of ultra-compact all-optical logic devices and integrated chips on silicon photonic platforms by topology optimization. The footprint for the fabricated all-optical logic gates with XOR and OR functions is only 1.3*1.3 {\mu}m2 (~0.84{\lambda}*0.84{\lambda}), that are the smallest all-optical dielectric logic devices ever verified in experiments in the optical communication range. The ultra-low loss of the optical signal is also demonstrated experimentally (-0.96dB). Furthermore, an integrated chip containing seven major logic gates (AND, OR, NOT, NAND, NOR, XOR, and XNOR) and a half adder is fabricated, where the associated footprint is only 1.3*4.5 {\mu}m2. Our work opens up a new path towards practical all-optical integration and optical computing.

  • High capacity topological coding based on nested vortex knots and links

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Optical knots and links have attracted great attention because of their exotic topological characteristics. Recent investigations have shown that the information encoding based on optical knots could possess robust features against external perturbations. However, as a superior coding scheme, it is also necessary to achieve a high capacity, which is hard to be fulfilled by existing knot-carriers owing to the limit number of associated topological invariants. Thus, how to realize the knot-based information coding with a high capacity is a key problem to be solved. Here, we create a type of nested vortex knot, and show that it can be used to fulfill the robust information coding with a high capacity assisted by a large number of intrinsic topological invariants. In experiments, we design and fabricate metasurface holograms to generate light fields sustaining different kinds of nested vortex links. Furthermore, we verify the feasibility of the high-capacity coding scheme based on those topological optical knots. Our work opens another way to realize the robust and high capacity optical coding, which may have useful impacts on the field of information transfer and storage.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心